Product Data GRIDPRO™ UXP17W GRIDPRO™ UXP17W is a punched and drawn geogrid containing high density polyethylene that is integrally formed into a uniaxial geogrid. GRIDPRO UXP17W will meet the following Minimum Average Roll Values (MARV) when tested in accordance with the methods listed below. These characteristics make GRIDPRO UXP17W ideal for the construction of segmental block walls and welded wire walls. The geogrid is resistant to ultraviolet degradation and to biological and chemical environments normally found in soils. | | MARV ² | | |---|-------------------|---------------| | PROPERTY | ENGLISH | METRIC | | ORIGIN OF MATERIALS | | | | % U.S. Manufactured Inputs | 100% | 100% | | % U.S. Manufactured | 100% | 100% | | INDEX PROPERTIES | | | | Tensile Strength @ 5% Strain ³ | 5480 lb/ft | 80 kN/m | | Ultimate Tensile Strength ³ | 10275 lbs/ft | 150 kN/m | | Junction Strength ⁴ | 8220 lbs/ft | 120 kN/m | | Flexural Stiffness ⁵ | 9075000 mg-cm | 9075000 mg-cm | | DURABILITY | • | | | Resistance to Long Term Degradation ⁶ | 100% | 100% | | Resistance to UV Degradation ⁷ | 95% | 95% | | LOAD CAPACITY | | | | Max Allowable (Design) Strength for 120-year Design Life ⁸ | 4213 lbs/ft | 62 kN/m | | RECOMMENDED ALLOWABLE STRENGTH REDUCTION FACTORS ⁸ | • | | | Minimum Reduction Factor for Installation Damage (RF _{ID}) ⁹ | 1.00 | 1.00 | | Minimum Reduction Factor for Durability (RF _D) | 1.05 | 1.05 | | ROLL SIZES | 3.28 ft x 98 ft | 1 m x 30 m | ## NOTES - 1. The property values listed above are effective 12/20/2018 and are subject to change without notice. Values represent testing at time of manufacture. - 2. Nominal dimension - 3. True resistance to elongation when initially subjected to a load determined in accordance with ASTM D6637-15without deforming test materials under load before measuring such resistance or employing "secant" or "offset" tangent methods of measurement so as to overstate tensile properties. - 4. Load transfer capability determined in accordance with ASTM D7737-15 and expressed as a percentage of ultimate tensile strength. - 5. Resistance to bending force determined in accordance with ASTM D7748-14, using specimens of width two ribs wide, with transverse ribs cut flush with exterior edges of longitudinal ribs (as a "ladder"), and of length sufficiently long to enable measurement of the overhang dimension. - 6. Resistance to loss of load capacity or structural integreity when subjected to chemically aggressive environements in accordance with EPA 9090 immersion testing. - 7. Resistance to loss of load capacity or structural integrity when subjected to 500 hours of ultraviolet light and aggressive weathering in accordance with ASTM D4355-14. - 8. Reduction factors are used to calculate the geogrid strength available for resisting force in long-term load bearing applications. Allowable Strength (Tallow) is determined by reducing the ultimate tensile strength (Tult) by reduction factors for installation damage (RF_{ID}), creed (RF_{CR}) and chemical/biological durability (RF_D=RF_{CD}*RF_{BD}) per GRI-GG4-05 [Tallow=Tult/(RF_{ID}*RF_{CR}*FR_D)]. Recommended minimum reduction factors are based on product-specific testing. Project specifications, standard public agency specifications and/or design code requirements may require higher reduction factors. Design of the structure in which the geogrid is used, including the selection of appropriate reduction factors and design life, is the responsibility of the outside licensed professional engineer providing the sealed drawings for the project. - 9. Minimum value is based on Installation Damage Testing in Sand, Silt and Clay soils. Coarser soils require increased RFID values. - 10. Reduction Factor for Creep determined for 120-year design life and in-soil temperature of 20°C using standard extrapolation techniques to creep rupture data obtained following the test procedure in ASTM D5262-04. Actual design life of the completed structure may differ. ENGINEERED EARTH SOLUTIONS™ www.propexglobal.com Propex Operating Company, LLC · 4019 Industry Drive · Chattanooga, TN 37416 · ph 423 855 1466 · ph 800 621 1273 ARMORMAX®, PYRAMAT®, LANDLOK®, X3®, PYRAWALL®, SCOURLOK®, GEOTEX®, PETROMAT®, PETROTAC®, REFLECTEX®, and GRIDPRO™ are registered trademarks of Propex Operating Company, LLC. This publication should not be construed as engineering advice. While information contained in this publication is accurate to the best of our knowledge, Propex does not warrant its accuracy or completeness. The ultimate customer and user of the products should assume sole responsibility for the final determination of the suitability of the information and the products for the contemplated and actual use. The only warranty made by Propex for its products is set forth in our product data sheets for the product, or such other written warranty as may be agreed by Propex and individual customers. Propex specifically disclaims all other warranties, express or implied, including without limitation, warranties of merchantability or fitness for a particular purpose, or arising from provision of samples, a course of dealing or usage of trade.